Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Br J Cancer ; 130(7): 1078-1082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424166

ABSTRACT

Cancer research has played a pivotal role in improving patient outcomes. However, despite the significant investment in fundamental cancer research over the past few decades, the translation of funding into substantial advancements in cancer treatment has been limited. This perspective article employs a detailed analysis to outline strategies for promoting innovation and facilitating discoveries within the field of cancer research.


Subject(s)
Biomedical Research , Neoplasms , Humans , Translational Research, Biomedical , Neoplasms/therapy
2.
Cell Mol Life Sci ; 80(10): 297, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728789

ABSTRACT

Human brain is characterized by extremely sparse extracellular matrix (ECM). Despite its low abundance, the significance of brain ECM in both physiological and pathological conditions should not be underestimated. Brain metastasis is a serious complication of cancer, and recent findings highlighted the contribution of ECM in brain metastasis development. In this review, we provide a comprehensive outlook on how ECM proteins promote brain metastasis seeding. In particular, we discuss (1) disruption of the blood-brain barrier in brain metastasis; (2) role of ECM in modulating brain metastasis dormancy; (3) regulation of brain metastasis seeding by ECM-activated integrin signaling; (4) functions of brain-specific ECM protein reelin in brain metastasis. Lastly, we consider the possibility of targeting ECM for brain metastasis management.


Subject(s)
Brain Neoplasms , Humans , Extracellular Matrix , Brain , Extracellular Matrix Proteins , Blood-Brain Barrier
3.
Cancer Discov ; 12(7): 1742-1759, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35420681

ABSTRACT

Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. SIGNIFICANCE: The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.


Subject(s)
Cancer Vaccines , Neoplasms , Animals , Cancer Vaccines/therapeutic use , Dendritic Cells , Immunotherapy , Mice , Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Vitamin E/metabolism
4.
Arch Physiol Biochem ; 128(1): 261-269, 2022 Feb.
Article in English | MEDLINE | ID: mdl-31595792

ABSTRACT

To compare DPP4, LCN2, NAMPT, ITLN1, APLN mRNA levels in adipocytes isolated from the biopsies of subcutaneous, epicardial and perivascular fat obtained from 25 patients with coronary artery disease. Gene expression signature was determined by RT-qPCR with hydrolysis probes. We found DPP4 and APLN mRNA was higher expressed only in adipocytes isolated from epicardial adipose tissue compared to the subcutaneous fat. The ITLN1 gene was overexpressed in epicardial adipose tissue compared to both subcutaneous and perivascular tissues. APLN mRNA expression was positively correlated with total and LDL cholesterol plasma level, and DPP4 mRNA expression - with VLDL cholesterol concentration. Thus, adipocytes isolated from different adipose depots are characterised by differential gene expression of adipokines. Epicardial adipose tissue is of particular interest in the context of its function, molecular and genetic mechanisms of regulation of the cardiovascular system and as a therapeutic target for correction of adipose tissue-induced effects on health.


Subject(s)
Adipokines , Coronary Artery Disease , Adipocytes , Adipose Tissue , Coronary Artery Disease/genetics , Gene Expression , Humans
5.
Semin Cell Dev Biol ; 128: 90-102, 2022 08.
Article in English | MEDLINE | ID: mdl-34556419

ABSTRACT

Interaction of a tumor with its microenvironment is an emerging field of investigation, and the crosstalk between cancer cells and the extracellular matrix is of particular interest, since cancer patients with abundant and stiff extracellular matrices display a poorer prognosis. At the post-juvenile stage, the extracellular matrix plays predominantly a structural role by providing support to cells and tissues; however, during development, matrix proteins exert a plethora of diverse signals to guide the movement and determine the fate of pluripotent cells. Taking a closer look at the communication between the extracellular matrix and cells of a developing body may bring new insights into cancer biology and identify cancer weaknesses. This review discusses parallels between the extracellular matrix roles during development and tumor growth.


Subject(s)
Extracellular Matrix , Neoplasms , Biology , Developmental Biology , Extracellular Matrix/metabolism , Humans , Neoplasms/pathology , Tumor Microenvironment
6.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830334

ABSTRACT

An association between high serum calcium/phosphate and cardiovascular events or death is well-established. However, a mechanistic explanation of this correlation is lacking. Here, we examined the role of calciprotein particles (CPPs), nanoscale bodies forming in the human blood upon its supersaturation with calcium and phosphate, in cardiovascular disease. The serum of patients with coronary artery disease or cerebrovascular disease displayed an increased propensity to form CPPs in combination with elevated ionised calcium as well as reduced albumin levels, altogether indicative of reduced Ca2+-binding capacity. Intravenous administration of CPPs to normolipidemic and normotensive Wistar rats provoked intimal hyperplasia and adventitial/perivascular inflammation in both balloon-injured and intact aortas in the absence of other cardiovascular risk factors. Upon the addition to primary human arterial endothelial cells, CPPs induced lysosome-dependent cell death, promoted the release of pro-inflammatory cytokines, stimulated leukocyte adhesion, and triggered endothelial-to-mesenchymal transition. We concluded that CPPs, which are formed in the blood as a result of altered mineral homeostasis, cause endothelial dysfunction and vascular inflammation, thereby contributing to the development of cardiovascular disease.


Subject(s)
Angina Pectoris/physiopathology , Brain Ischemia/physiopathology , Calcium Chloride/blood , Coronary Artery Disease/physiopathology , Endothelial Cells/pathology , Myocardial Infarction/physiopathology , Phosphates/blood , Angina Pectoris/blood , Angina Pectoris/genetics , Animals , Aorta/metabolism , Aorta/pathology , Brain Ischemia/blood , Brain Ischemia/genetics , Calcium Chloride/chemistry , Case-Control Studies , Cell Death , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Flocculation , Gene Expression Regulation , Humans , Inflammation , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Lysosomes/metabolism , Lysosomes/pathology , Male , Myocardial Infarction/blood , Myocardial Infarction/genetics , Phosphates/chemistry , Primary Cell Culture , Rats , Rats, Wistar , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Tunica Intima/metabolism , Tunica Intima/pathology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Article in English | MEDLINE | ID: mdl-33198933

ABSTRACT

Mitomycin C (MMC) is an alkylating chemotherapy drug that causes DNA crosslinking resulting in transcription arrest and apoptosis. DNA crosslinking is a critical damage to DNA that can be caused not only by MMC and other antitumor drugs, but also by various environmental and anthropogenic endo- and exogenous agents. Mammalian cells exposed to alkylating mutagens are characterized by severe genotoxic stress. Somatic mutations and genotoxic stress may lead to endothelial dysfunction, which is the initial stage of atherosclerosis, a leading cause of morbidity and mortality worldwide. Here we studied DNA damage, protein secretion and gene expression of IL6 and IL8 in primary human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC) in vitro exposed to 500 ng/mL MMC. We observed an increase in levels of cytogenetic damage (micronuclei, nucleoplasmic bridges and nuclear buds) in MMC-treated cells compared to control cells. After 6 h incubation with MMC, both HCAEC and HITAEC displayed a decrease in IL8 concentration and the mRNA level of IL6 and IL8 compared to control cells. Removal of MMC from cultures after 6 h followed by 24 h incubation of cells in complete growth media led to a sharp increase in secretion and gene expression of the studied cytokines in both HCAEC and HITAEC. Moreover, HCAEC were more susceptible to mutagenic exposure compared to HITAEC. These findings suggest that the MMC-induced genotoxic stress in endothelial cells derived from different arteries is associated with differential secretion and gene expression of proinflammatory cytokines IL6 and IL8.


Subject(s)
Cytokines/metabolism , DNA Damage , Endothelial Cells/drug effects , Mitomycin/pharmacology , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Cytokines/genetics , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression/drug effects , Humans , Inflammation Mediators/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism
9.
Cancers (Basel) ; 12(11)2020 11 11.
Article in English | MEDLINE | ID: mdl-33187209

ABSTRACT

The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.

10.
Polymers (Basel) ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971801

ABSTRACT

In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS-CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS-CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS-CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve.

11.
J Am Heart Assoc ; 9(19): e018506, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32954917

ABSTRACT

The implantation of bioprosthetic heart valves (BHVs) is increasingly becoming the treatment of choice in patients requiring heart valve replacement surgery. Unlike mechanical heart valves, BHVs are less thrombogenic and exhibit superior hemodynamic properties. However, BHVs are prone to structural valve degeneration (SVD), an unavoidable condition limiting graft durability. Mechanisms underlying SVD are incompletely understood, and early concepts suggesting the purely degenerative nature of this process are now considered oversimplified. Recent studies implicate the host immune response as a major modality of SVD pathogenesis, manifested by a combination of processes phenocopying the long-term transplant rejection, atherosclerosis, and calcification of native aortic valves. In this review, we summarize and critically analyze relevant studies on (1) SVD triggers and pathogenesis, (2) current approaches to protect BHVs from calcification, (3) obtaining low immunogenic BHV tissue from genetically modified animals, and (4) potential strategies for SVD prevention in the clinical setting.


Subject(s)
Bioprosthesis , Heart Valve Diseases/surgery , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis , Prosthesis Failure , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis Implantation/trends , Humans
12.
ACS Omega ; 5(34): 21700-21711, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32905385

ABSTRACT

Modification by Arg-Gly-Asp (RGD) peptides is a promising approach to improve the biocompatibility of biodegradable vascular patches for arteriotomy. In this study, we evaluated the performance of vascular patches electrospun using a blend of polycaprolactone (PCL) and polyhydroxybutyrate/valerate (PHBV) and additionally modified with RGDK, AhRGD, and c[RGDFK] peptides using 1,6-hexamethylenediamine or 4,7,10-trioxa-1,13-tridecanediamine (TTDDA) linkers. We examined mechanical properties and hemocompatibility of resulting patches before implanting them in rat abdominal aortas to assess their performance in vivo. Patches were explanted 1, 3, 6, and 12 months postoperation followed by histological and immunofluorescence analyses. Patches manufactured from the human internal mammary artery or commercially available KemPeriplas-Neo xenopericardial patches were used as a control. The tensile strength and F max of KemPeriplas-Neo patches were 4- and 16.7-times higher than those made of human internal mammary artery, respectively. Both RGD-modified and unmodified PHBV/PCL patches demonstrated properties similar to a human internal mammary artery patch. Regardless of RGD modification, experimental PHBV/PCL patches displayed fewer lysed red blood cells and resulted in milder platelet aggregation than KemPeriplas-Neo patches. Xenopericardial patches failed to form an endothelial layer in vivo and were prone to calcification. By contrast, TTDDA/RGDK-modified biodegradable patches demonstrated a resistance to calcification. Modification by TTDDA/RGDK and TTDDA/c[RGDFK] facilitated the formation of neovasculature upon the implantation in vivo.

13.
Pharmaceuticals (Basel) ; 13(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455730

ABSTRACT

The development of novel biodegradable vascular grafts of a small diameter (<6 mm) is an unmet clinical need for patients requiring arterial replacement. Here we performed a pre-clinical study of new small-caliber biodegradable vascular grafts using a sheep model of carotid artery implantation. The 4 mm diameter vascular grafts were manufactured using a mix of polyhydroxybutyrate/valerate and polycaprolactone supplemented with growth factors VEGF, bFGF and SDF-1α (PHBV/PCL-GFmix) and additionally modified by a polymer hydrogel coating with incorporation of drugs heparin and iloprost (PHBV/PCL-GFmixHep/Ilo). Animals with carotid artery autograft implantation and those implanted with clinically used GORE-TEX® grafts were used as control groups. We observed that 24 h following surgery, animals with carotid artery autograft implantation showed 87.5% patency, while all the PHBV/PCL-GFmix and GORE-TEX® grafts displayed thrombosis. PHBV/PCL-GFmixHep/Ilo grafts demonstrated 62.5% patency 24 h following surgery and it had remained at 50% 1 year post-operation. All the PHBV/PCL grafts completely degraded less than 1 year following surgery and were replaced by de novo vasculature without evidence of calcification. On the other hand, GORE-TEX® grafts displayed substantial amounts of calcium deposits throughout graft tissues. Thus, here we report a potential clinical usefulness of PHBV/PCL grafts upon their additional modification by growth factors and drugs to promote endothelialization and reduce thrombogenicity.

14.
Article in English | MEDLINE | ID: mdl-31548224

ABSTRACT

Brain metastases are associated with poor prognosis irrespective of the primary tumor they originate from. Current treatments for brain metastases are palliative, and patients with symptomatic brain metastasis have a one-year survival of <20%. Lung cancer, breast cancer, and melanoma have higher incidences of brain metastases compared with other types of cancers. However, it is not very clear why some cancers metastasize to the brain more frequently than others. Studies thus far suggest that brain-specific tropism of certain types of cancers is defined by a winning combination of the following factors: unique genetic subtypes of primary tumors or its subclones enabling detachment, dissemination, blood-brain barrier penetration, plus proliferation and survival in hypoxic low-glucose microenvironment; specific transcriptomic and epigenetic changes of colony-forming metastatic cells, allowing their outgrowth; favorable metastasis-permissive microenvironment of the brain created by interactions of cancer cells and cells in the brain through triggering inflammation, recruiting myeloid-derived suppressor cells, and promoting metabolic adaptation; immunosuppression resulting in the failure of adaptive immune response to recognize or kill cancer cells in the brain. Here, we briefly review recent advances in understanding brain metastasis organotropism and outline directions for future research.


Subject(s)
Brain Neoplasms/secondary , Immunotherapy/methods , Tumor Microenvironment/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Gene Expression , Humans , Tumor Microenvironment/immunology
15.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G625-G639, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31545917

ABSTRACT

Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble high-molecular-mass proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the ECM from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of proteins upregulated in the ECM significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the ECM component. One of the proteins upregulated in liver metastatic ECM, annexin A1, was not previously studied in the context of cancer-associated matrisome. Here, we show that annexin A1 was markedly upregulated in colon cancer cell lines compared with cancer cells of other origin and also over-represented in human primary colorectal lesions, as well as hepatic metastases, compared with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes annexin A1 as a putative target for this disease.NEW & NOTEWORTHY Here, the authors provide an extensive proteomics characterization of murine colorectal cancer liver metastasis matrisome (the ensemble of all extracellular matrix molecules). The findings presented in this study may enable identification of therapeutic targets or biomarkers of hepatic metastases.


Subject(s)
Colorectal Neoplasms/genetics , Extracellular Matrix Proteins/metabolism , Liver Neoplasms/genetics , Proteome/metabolism , Animals , Annexin A1/genetics , Annexin A1/metabolism , Colon/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Extracellular Matrix Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Liver/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Mice , Mice, Inbred C57BL , Proteome/genetics , Up-Regulation
16.
Cancers (Basel) ; 11(5)2019 May 06.
Article in English | MEDLINE | ID: mdl-31064120

ABSTRACT

Hepatic metastatic growth is dependent upon stromal factors including the matrisomal proteins that make up the extracellular matrix (ECM). Laminins are ECM glycoproteins with several functions relevant to tumour progression including angiogenesis. We investigated whether metastatic colon cancer cells produce the laminins required for vascular basement membrane assembly as a mechanism for the promotion of angiogenesis and liver metastasis growth. qPCR was performed using human-specific primers to laminin chains on RNA from orthotopic human colorectal liver metastases. Laminin α5 (LAMA5) expression was inhibited in colon cancer cells using shRNA. Notch pathway gene expression was determined in endothelia from hepatic metastases. Orthotopic hepatic metastases expressed human laminin chains α5, ß1 and γ1 (laminin 511), all of which are required for vascular basement membrane assembly. The expression of Laminin 511 was associated with reduced survival in several independent colorectal cancer cohorts and angiogenesis signatures or vessel density significantly correlated with LAMA5 expression. Colorectal cancer cells in culture made little LAMA5, but its levels were increased by culture in a medium conditioned by tumour-derived CD11b+ myeloid cells through TNFα/NFκB pathway signalling. Down-regulation of LAMA5 in cancer cells impaired liver metastatic growth and resulted in reduced intra-tumoural vessel branching and increased the expression of Notch pathway genes in metastasis-derived endothelia. This data demonstrates a mechanism whereby tumour inflammation induces LAMA5 expression in colorectal cancer cells. LAMA5 is required for the successful growth of hepatic metastases where it promotes branching angiogenesis and modulates Notch signalling.

17.
J Mol Cell Cardiol ; 132: 189-209, 2019 07.
Article in English | MEDLINE | ID: mdl-31136747

ABSTRACT

Calcific aortic valve disease (CAVD), previously thought to represent a passive degeneration of the valvular extracellular matrix (VECM), is now regarded as an intricate multistage disorder with sequential yet intertangled and interacting underlying processes. Endothelial dysfunction and injury, initiated by disturbed blood flow and metabolic disorders, lead to the deposition of low-density lipoprotein cholesterol in the VECM further provoking macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines. Such changes in the valvular homeostasis induce differentiation of normally quiescent valvular interstitial cells (VICs) into synthetically active myofibroblasts producing excessive quantities of the VECM and proteins responsible for its remodeling. As a result of constantly ongoing degradation and re-deposition, VECM becomes disorganised and rigid, additionally potentiating myofibroblastic differentiation of VICs and worsening adaptation of the valve to the blood flow. Moreover, disrupted and excessively vascularised VECM is susceptible to the dystrophic calcification caused by calcium and phosphate precipitating on damaged collagen fibers and concurrently accompanied by osteogenic differentiation of VICs. Being combined, passive calcification and biomineralisation synergistically induce ossification of the aortic valve ultimately resulting in its mechanical incompetence requiring surgical replacement. Unfortunately, multiple attempts have failed to find an efficient conservative treatment of CAVD; however, therapeutic regimens and clinical settings have also been far from the optimal. In this review, we focused on interactions and transitions between aforementioned mechanisms demarcating ascending stages of CAVD, suggesting a predisposing condition (bicuspid aortic valve) and drug combination (lipid-lowering drugs combined with angiotensin II antagonists and cytokine inhibitors) for the further testing in both preclinical and clinical trials.


Subject(s)
Aortic Valve Stenosis/physiopathology , Aortic Valve/pathology , Calcinosis/physiopathology , Clinical Trials as Topic , Heart Valve Diseases/pathology , Heart Valve Diseases/therapy , Animals , Aortic Valve/physiopathology , Aortic Valve Stenosis/complications , Calcinosis/complications , Heart Valve Diseases/etiology , Humans
18.
Polymers (Basel) ; 11(1)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30960158

ABSTRACT

Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering.

19.
Cancer Res ; 79(7): 1274-1284, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30894374

ABSTRACT

Posttranslational modifications of proteins have been implicated in pathogenesis of numerous diseases. Arginine deimination (also known as citrullination) has a principal role in progression of rheumatoid arthritis through generation of autoantibodies and exacerbation of the inflammatory response. Recently, multiple research groups provided solid evidence of citrullination being in control of cancer progression; however, there is no comprehensive overview of these findings. This article summarizes and critically reviews the influence of citrullination on different aspects of tumor biology, including (i) regulation of apoptosis and differentiation, (ii) promoting EMT and metastasis, and (iii) potential use of citrullinated antigens for immunotherapy. In addition, (iv) the role of citrullination as a cancer biomarker and (v) implication of neutrophil extracellular traps in tumorigenesis are discussed. In summary, current findings testify to the significance of arginine deimination in tumor biology and thus more basic and translational studies are needed to further explore this topic.


Subject(s)
Citrullination , Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition , Humans , Neoplasms/enzymology , Neoplasms/immunology , Neoplasms/pathology , Protein-Arginine Deiminases/metabolism , Signal Transduction
20.
EMBO Mol Med ; 10(12)2018 12.
Article in English | MEDLINE | ID: mdl-30442705

ABSTRACT

Emerging evidence suggests a role for radiation in eliciting anti-tumour immunity. We aimed to investigate the role of macrophages in modulating the immune response to radiation. Irradiation to murine tumours generated from colorectal (MC38) and pancreatic (KPC) cell lines induced colony-stimulating factor 1 (CSF-1). Coincident with the elevation in CSF-1, macrophages increased in tumours, peaking 5 days following irradiation. These tumour-associated macrophages (TAMs) were skewed towards an immunosuppressive phenotype. Macrophage depletion via anti-CSF (aCSF) reduced macrophage numbers, yet only achieved tumour growth delay when combined with radiation. The tumour growth delay from aCSF after radiation was abrogated by depletion of CD8 T cells. There was enhanced recognition of tumour cell antigens by T cells isolated from irradiated tumours, consistent with increased antigen priming. The addition of anti-PD-L1 (aPD-L1) resulted in improved tumour suppression and even regression in some tumours. In summary, we show that adaptive immunity induced by radiation is limited by the recruitment of highly immunosuppressive macrophages. Macrophage depletion partly reduced immunosuppression, but additional treatment with anti-PD-L1 was required to achieve tumour regression.


Subject(s)
Adaptive Immunity/radiation effects , Colorectal Neoplasms/radiotherapy , Leukocyte Reduction Procedures , Macrophages/immunology , Pancreatic Neoplasms/radiotherapy , X-Ray Therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/immunology , Disease Models, Animal , Mice , Pancreatic Neoplasms/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...